

Cables

Why is fibre so much faster and what difference will it make for me?

John Steele

Outline of what we will cover

- Why talk about cables?
- Copper cables
 - What types of cables are there
 - What are their limitations and why are they limited
- Fibre cables
 - What types are there and how fast are they
 - What are the benefits of fibre compared to copper
- How the telephone service has (and still is) evolved over the years

Why do we need data cables

- Computers all need data cables of one sort or another
- There are many types including
 - Cables to connect devices to your computer
 - Keyboards now USB
 - Mice now USB or wireless
 - Screens now HDMI
 - Local Area Networks Ethernet or Wireless
 - Cables for your to connect to the outside world
 - Telephone and broadband

Miscellaneous facts

- Speed of light in free space = 300,000 km/s
 - 0.3 metres per nanosecond
- Speed of pulses down a cable = approximately 0.7 * speed of light
 - 4.76 nanoseconds per metre
 - Delay for 100 metres = 476 nano seconds approximately
- Pulse lengths
 - 1 Mbps = 1 microsecond per bit or about 2 metres in a cable
 - 100 Mbps = 10 nanoseconds per bit or about 210 centimetres in a cable
 - 250 Mbps = 2.5 nanoseconds per bit or about 84 centimetres in a cable
 - 1G bps = 1 nanosecond per bit or about 21 centimetres in a cable

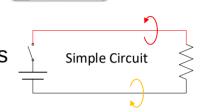
What type of data do we transmit down cables

- Signals sent down cables are (simplistically) one of the following
 - Audio (e.g. telephone call)
 - Multiple frequencies, limited range e.g. 75 Hz to 3500 Hz
 - Telephone originally deliberately constrained to be low frequency
 - Human hearing goes up to around 10 KHz (or perhaps 20 KHz when young)
 - Baseband Video e.g. TV monitors
 - Signals from about 8 MHz to about 50 MHz or more
 - True digital signals no encoding
 - Digital pulses from zero to about 100 Mbps (for short distances over copper)
 - Encoded digital signals
 - Complex encoded digital signals more later

Types of cable in use today

- Copper cables
 - Coaxial cable typically not used for digital data today
 - Bundles of copper wires
 - USB used for connecting devices to computers
 - HDMI used for video
 - Ethernet used to connect computers and other devices to each other
 - Four Twisted pair cables inside one sheath
- Fibre Optic cables two fibres (transmit/receive) required
 - Bundles of fine glass strands of principally two types
 - Multimode fibre
 - Mono or Single Mode fibre

Copper Data Cables

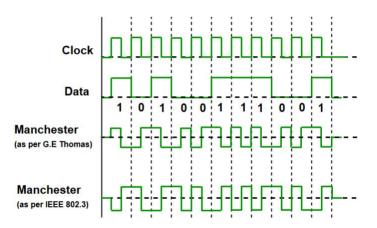

- Generic cable types
 - Coaxial cabling used to be used for data networks
 - early Ethernet (not quite the same cable as TV Coax!)
 - still used for Television
 - Most computer cables are now Twisted pair and we will look at this type of cable in more detail
 - What happens to signals in a bundle of cables
 - What happens to signals over a long cable

The science bit!

- When you send signals along a cable
 - An electric current flows from the sender
 - It passes through a "load" at the far end
 - The current returns to the sender to form a circuit
 - An electric current always creates a magnetic field around the wire that can be detected by a device such as a compass (if the current is strong enough)
 - When the magnetic field is building it "induces" a current to flow in any adjacent wire in the opposite direction
 - This can be helpful, or a cause of interference in adjacent data pairs
 - There is also another method of interference capacitive
 - When two metal object are close there can be a stored electrical charge which when the signals are changing can also lead to interference

Signals within cables - Interference

- A simple circuit has an outbound and return connection
 - It will create a magnetic field around each conductor when current flows
 - This magnetic field will "induce" stray signals into adjacent wires whenever the current flowing changes
- When you have a pair of adjacent wires for the outbound and inbound connection the magnetic fields in each conductor tend to cancel out reducing interference to adjacent circuits
 - The cancellation can be improved by twisting the pairs together reducing interference although it is never perfect
 - Capacitive coupling can also occur between pairs of non related circuits and creates interference
- Twisted pair Data Cables commonly have four pairs providing one connection

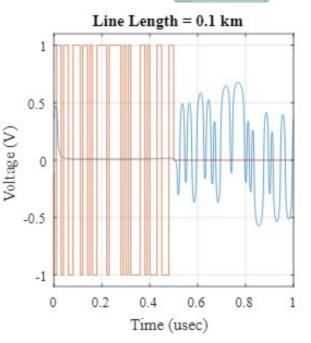


What happens to pulses sent down a cable

- A copper cable is actually quite a complex component
- A twisted pair cable has a property called resistance measured in Ohms
 - The signal will lose amplitude with distance
 - This is not too important as it can be amplified at the receiver
- Each wire in a twisted pair cable also has a property called Inductance (measured in Henrys) and one called Capacitance (measured in Farads)
 - The more generic term for the effect on a signal is "Impedance"
 - The affect of impedance on the signal depends on its frequency
 - With inductance the impedance value increases with frequency
 - With capacitance it is effectively a leakage path to adjacent wires the impedance reduces with increased frequency

How is binary data transmitted over copper cables

- A digital signal consists of a series of high and low voltages encoded in a special way to include a timing element. The receiver needs to know when to expect a 1 or a 0
- One such encoding scheme is Manchester Encoding
 - This is self clocking
 - It effectively uses an encoded bit rate of between 1 and 2 * the original data rate
- Higher data rates use more complex encoding methods which also use the amplitude to encode more bits into each pulse



Example Data packet - Ethernet

- Data is typically sent in "packets" Ethernet as an example
 - A self contained set of bytes
 - Preamble (7 bytes) + Start frame delimiter (1 byte)
 - receiver clock synchronisation and start of message
 - Body of message (60 to 1518 bytes)
 - Checksum (4 bytes)
 - Check message is received correctly

Cable propagation

- This simulation shows signals being sent down a 100 metre twisted pair cable at 100 Mb/s
 - Red is the signal as pushed into the cable
 - Blue is as it emerges from the other end
 - This is without any interfering signals from other adjacent cables
 - Note the propagation delay and distortion!
- I Gb/s is impossible on a single pair
 - 256 Mb/s is about the limit for 100 metres

https://web.mst.edu/~kosbar/ee3430/ff/transmissionlines/ex ample_twistedpair/data/index.html

So what about 1 Gb/s?

- The previous slide assumes that 100 Mb/s is sent down one pair and the reverse channel is down another pair
 - One pair for transmit and one for receive
- In a standard Cat 5/6 cable we have 4 pairs, With clever electronics:
 - We can can send data and receive data back on the SAME pair
 - We can use all 4 pairs to send 4 bits at a time in each direction
 - We can encode several bits into one pulse by varying its amplitude
 - We can achieve 1 Gb/s in both directions for a **maximum** of 100 m
- Data in wires travels at about 0.7 c (c is the speed of light)
 - There is therefore a delay of about 476 nanoseconds over 100 m
 - This equates to 476 bits delay = almost 60 bytes

But what about broadband over telephone

- The previous slide states that 100 metres is about the limit for local copper networks at speeds up to 1 Gb/s
- Telephone wires are much longer and were not originally designed for data
 - Frequency range permitted was constrained (by a set of mandatory standards) from about 100Hz to 3.5 kHz and the permitted signal strength outside this range frequencies dropped off very rapidly
 - Communicators equipment (modems) had to work within these constraints and equipment was rigorously tested to ensure compliance with the published standards
 - This was a serious challenge to equipment designers!
 - Modem manufactures found ways (which were standardised) to achieve initially 2400 bps half duplex (only transmit or receive at any one time with a delay changing from one to the other) and later up to 56 Kbps full duplex

How was this done?

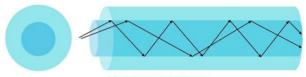
- Telephone wires are a single pair, bundled into perhaps 500 pairs from premises to exchange
 - Many were (and possibly still are) very old 50 years and long before any data transmission was ever contemplated
 - There can be a long distance (miles) between premises and the local telephone exchange
- All equipment had to be approved by the appropriate body PO \rightarrow BT \rightarrow BABT
- You must only send audible tones down the wires within the legally permitted frequency range and signal strength (and provide signal isolation up to initially 4 kilovolts!)
 - Constrained from about 50Hz to 3400 Hz not exactly HiFi
 - You can send multiple tones (signal frequencies) together
 - You can change the amplitude of each of the tones
- You can encode multiple bits by using several tones which can each have one of several amplitudes
 - Consider 16 separate tones as an illustration
 - When combined with 16 permitted amplitudes this encodes 256 bits at a time

Now for Broadband - ADSL

- ADSL (Asynchronous Digital Subscriber Line) uses frequencies above the old permitted range
 - It uses similar principles but I do have not have access to the current standards
- It is possible with modern signal processing electronics to elaborate on the earlier modem techniques
 - An ADSL connection to the telephone exchange has a dedicated device to service your line
 - DSLAM (Digital Subscriber Line Access Multiplexer) which connects you to an IP Router for data and routes voice to the telephone exchange
 - When first connected your ADSL modem and the DSLAM measure the characteristics of the line and optimise the encoding to match
 - They continue to do this even after the initial "training" session is over this can take two weeks
 - a good reason NOT to switch off your router
- There is a distance limitation between premises and exchange of about 3 to 5 miles
- Fibre to the cabinet (FTTC) moves the DSLAM and IP routing functionality near to customer premises and onward routing is over fibre
 - It is still a copper pair to the local cabinet.
 - We can then achieve up to 80 about megabits per second over FTTC in many cases

And now for Fibre – What is Fibre

- Fibre or to be more accurate Fibre Optic Cables have been available for many years.
- Instead of using copper wires they use fine glass fibres to carry light pulses generated by a laser
- A fibre optic cable has a pure fine glass fibre surrounded by a material with a lower "refractive index"
- When a light beam meets the boundary at less than a critical angle it it reflected back
- This is called Total Internal Reflection (TIR)
 - When it reaches the opposite side of the fibre it again is reflected back
 - It stays within the fibre!
 - Note that the light path lengths, and transit times, for a ray straight down the middle and one that bounces are different



Fibre – Types of fibre

- Glass fibre has especially low loss for light travelling at several specific wavelengths
 - 850 nanometres (0.85 microns) red visible light
 - 1300 nanometres (1.3 microns) Infrared (not visible)
 - 1550 nanometres (1.55 microns) Infrared (not visible)
- Fibre cables come in two versions
 - Single mode fibre is about 9 microns (or micrometres) in diameter
 - Multi Mode fibre is either 50 or 62.5 microns (62.5 most common in Europe)
- In both cases the fibre is surrounded by an optical cladding, to ensure Total Internal Reflection, and a protective external sheath
- Note that a human hair is typically between 20 and 200 microns with an average of about 100 microns

Difference between Multimode and Monomode fibre

- In a fibre the light is constrained by the fibre's Total Internal Reflection to stay within the fibre
- With multimode fibre the light paths can vary according to the angle at which they are launched
 - Multiple paths means that light rays can take the shorter path down the middle or a longer and hence more delayed path by bouncing and being reflected
 - This "blurs" the received pulses and limits the distance that can be driven
- With Monomode (or Single Mode) fibre the diameter of the fibre is too small to allow the multiple paths and there is no dispersion of the received signal
 - Monomode fibres can transmit data at very high rates even across the Atlantic!

Multimode Fiber

Single-Mode Fiber

Comparison of Single Mode vs Multi Mode

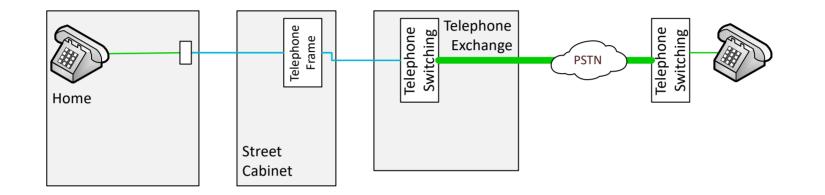
- Multi Mode Fibres
 - Are somewhat easier to terminate and hence much lower cost to install
 - But still much more expensive that copper cabling
 - Connectors can be spliced on relatively easily and have smaller losses on a misaligned connector
 - Are limited on distance and speed for very high data rates due to the multiple paths
- Single Mode
 - Require considerable expertise and specialised, expensive equipment to terminate connectors
 - Misalignment is far more critical for connectors
 - Distance and bandwidth does not need to be an issue
 - "Dark fibres" have spanned the Atlantic for years (available in 1988) using special lasers to launch signals into cable
 - Experimentally Terabits per second have been launched through a single fibre even in 1992

Comparison of copper cables to fibre

- Fibre can support higher data rates than copper
- Fibre (particularly single mode) can pass data over much longer distances than copper
- Copper is much easier to install than fibre
 - Can be bent without damage
 - Connectors are very low cost
 - RJ45 tools for Ethernet RJ45 connectors about £15, Krone tools to terminate fixed cables cost about the same
 - Training for both types of connection takes about 5 minutes
 - Once trained connections can take less than 1 minute
- Fibre (especially single mode) is much more difficult to work with
 - Does not tolerate sharp bends maximum 50 cm bend radius during installation
 - Connectors are expensive and need expensive precision equipment and specialised training to add a connector to a cable – the fibres are much thinner than a human hair!
 - Connections take much longer to terminate even for an expert
 - Equipment using fibre connectors is much more expensive that copper but does operate at higher speeds

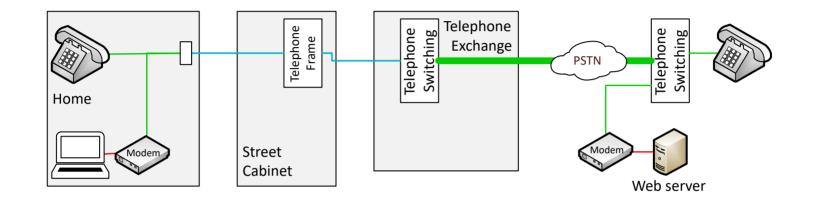
Why is the telephone service being upgraded

- The existing telephone service is using technology that is well over 100 years old
 - It was enhanced with Subscriber Trunk Dialling in the 1970's
 - Broadband services to end user premises is now as important as voice or perhaps even more so
 - Existing telephone services now run over IP networks in the UK
 - Conversion from voice to IP takes place in the local telephone exchange
- Single mode Fibre cables can provide an almost unlimited bandwidth making it "future proof"
 - Limitations are mostly within the termination equipment and the routers that are used within the customer premises
 - The public element can easily be enhanced without updating customer equipment

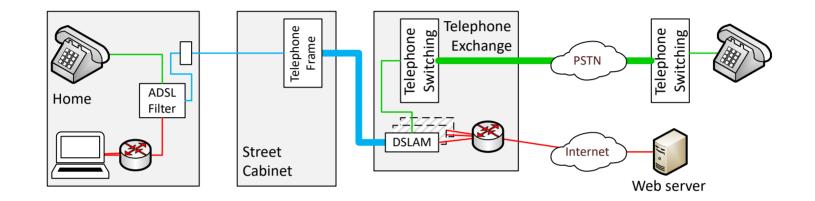

Points to note however

- Conversion of the whole telephone network to fibre is NOT directly related to the current fibre installation
- Swish (in our area) have permission to install Fibre To The Premises (FTTP) but they are not (yet) automatically providing telephone services
 - They are promising Gigabit speeds but at a cost and they become your ISP
 - Do you really need Gigabit speeds?
 - I can stream 4K TV concurrently with several HD TV streams on 34 Mbps FTTC service (accidentally tested during Wimbledon last year)
 - Swish CAN provide telephone services but this is not automatic and, I am assuming, will be additional cost
- There is an intention at some stage to migrate us all to fibre including telephone but I
 have seen no indication yet as to how much the consumer will have to pay

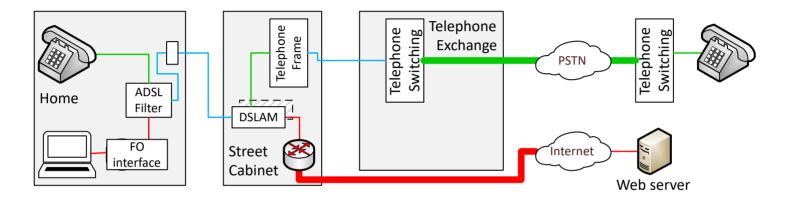
Are there any downsides?


- There is the obvious disruption on roads being dug up initially
- There will be issues when the fibres are run to the home or office
 - Some equipment will not be compatible and may need to be replaced
 - Candidates include
 - Alarm systems that communicate using the telephone network
 - Medical alert systems that communicate using the telephone network
 - Possibly old telephones
 - Looking at what is being done locally they may need to dig up driveways to take the new fibre cable to the property
 - We currently have an overhead cable from a pole in my garden

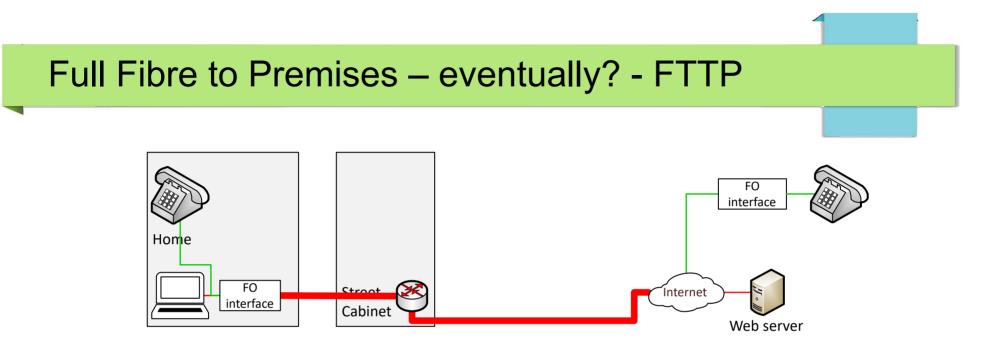
Basic Telephone


• A basic telephone system before any data services are added

Adding Internet access via modem


- We add a standard modem to basic the system
 - Can be external or an interface mounted inside a PC (desktop) or built into a laptop
- Routed via voice switching to the server where a modem decodes the data and passes to the server

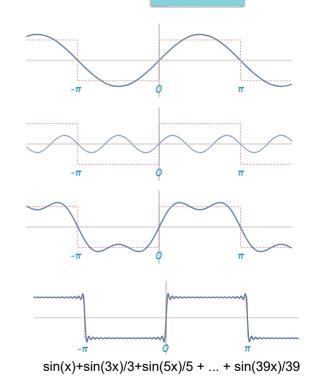
Adding ADSL broadband



- The router takes IP data from local network and encodes in a ADSL packets
- The ADSL filter merges the ADSL data with voice to pass both to the Exchange
- The DSLAM module in the exchange splits the voice and data
- The data is routed to the Internet
- Voice is passed to the existing telephone exchange

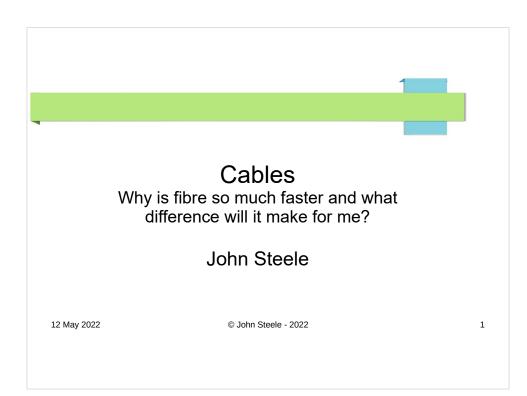
Fibre to the Cabinet – FTTC concept

- ADSL connection now processed in nearby street cabinet
 - Reduces distance that broadband signals travel
- An equivalent to the exchange DSLAM splits the internet data and voice
 - Voice is passed to telephone exchange for routing
 - All Internet data traffic routed to the Internet from the cabinet

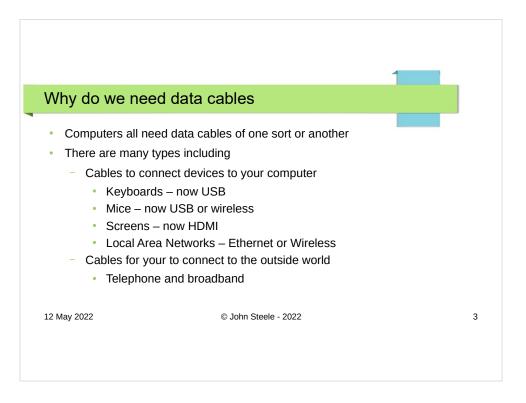

- Phone is now converted to IP in the home
- All Internet and voice traffic is routed via the Internet

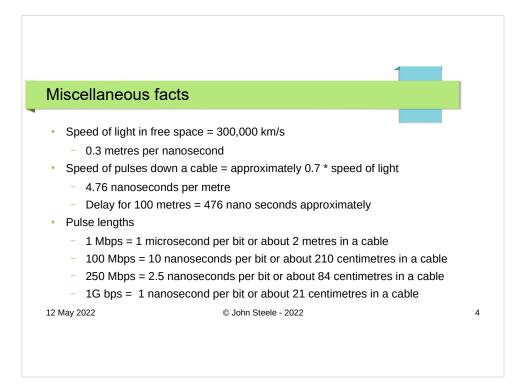
Some concerns

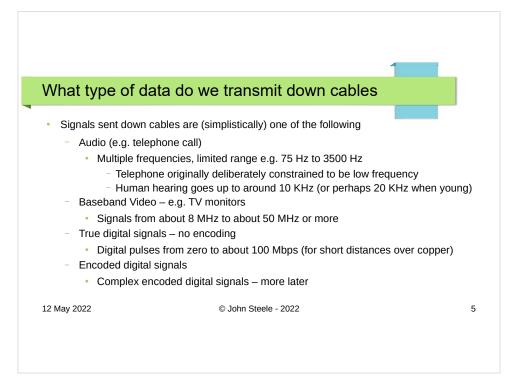
- It is currently unclear to me what will happen in an emergency situation where there is a
 power cut
- At present your telephone is provided with a 50 volt supply from the exchange
 - The telephone exchange is obliged, by law, to have a battery to provide this power so that telephone calls can be made in an emergency
 - This battery does NOT supply power to cordless telephones, These need to be plugged into the mains and do not work on power failure
 - That is why you are currently recommended to have an old fashioned (not cordless) telephone plugged into your home phone system as well
 - The new legislation requires the telephone provider to provide a battery pack <u>on</u> <u>request</u> but that will only provide power for 1 hour
 - The justification is that everyone has cell phones these days
 - OK if you can get a signal!

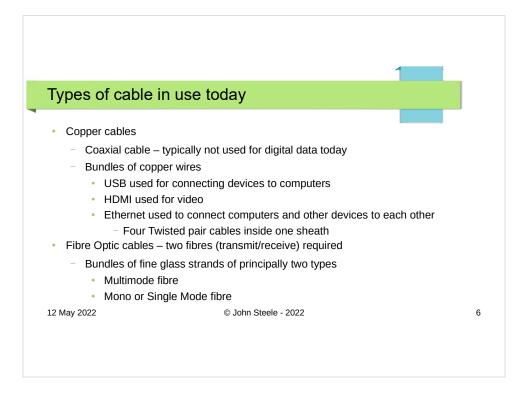

But what happens to these pulses over the cable

- A pulse train can be analysed into a series of "harmonics". Musicians may be familiar with that term
- This is called Fourier Analysis and consists of:
 - A series of "pure" (I.e. sinusoidal) frequencies.
 - Each is a multiple of the original bit rate
 - The amplitude of each frequency depends on the input wave shape
 - A "square wave" where each high and low are the same interval consists of
 - sin(x) + sin(3x)/3 + sin(5x)/5 + ...
 (infinitely)
 - x is 2 * π * f where f is the frequency

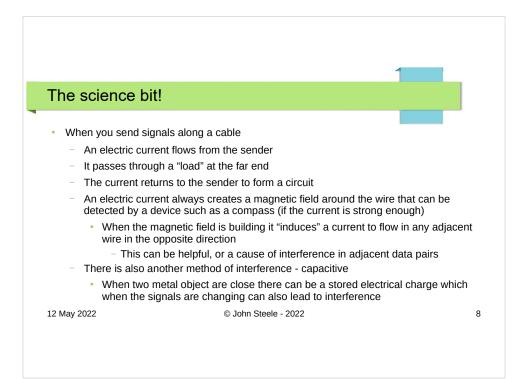


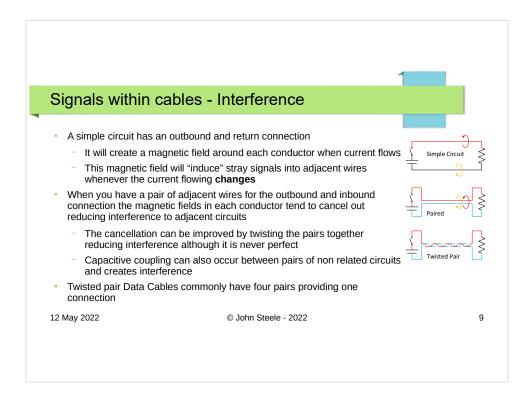

Copyright

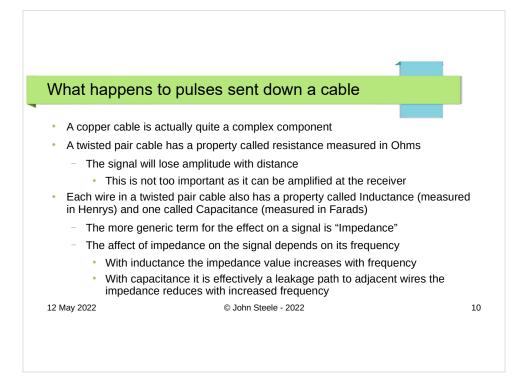

- John Steele retains the copyright to this document.
- Use of this material for non commercial purposes is freely permitted provided that it remains publicly accessible at all times and this copyright notice is retained
- Use of this material for any commercial gain requires explicit permission from the copyright holder who may be contacted via jcs.copyright@sorban.co.uk

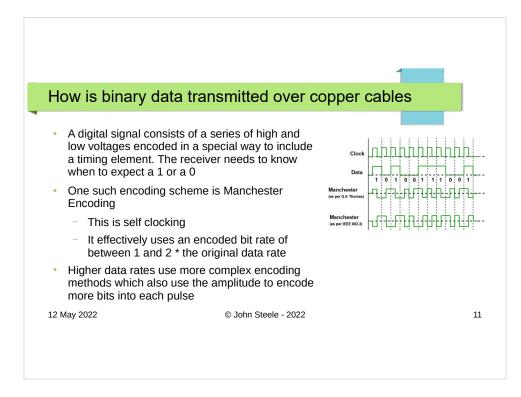


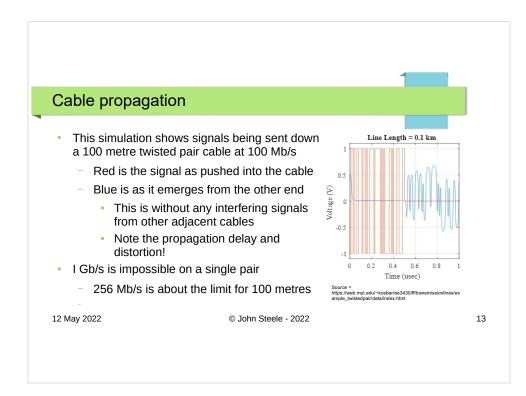
	1	
Outline of wh	nat we will cover	
 What are Fibre cables What type What are 		
12 May 2022	© John Steele - 2022	2

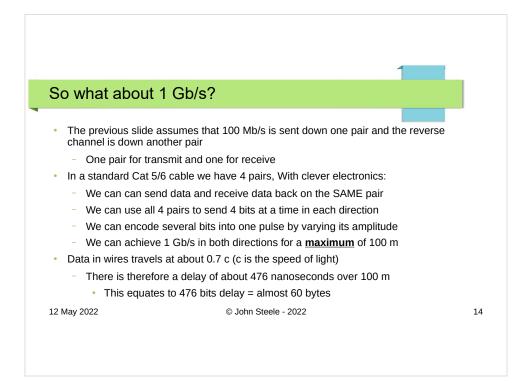


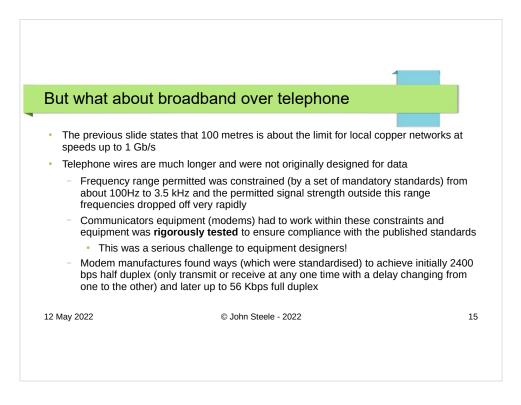


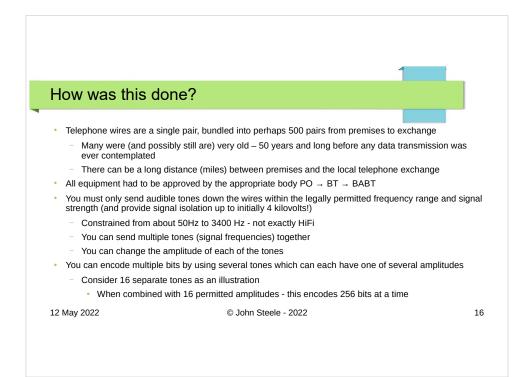


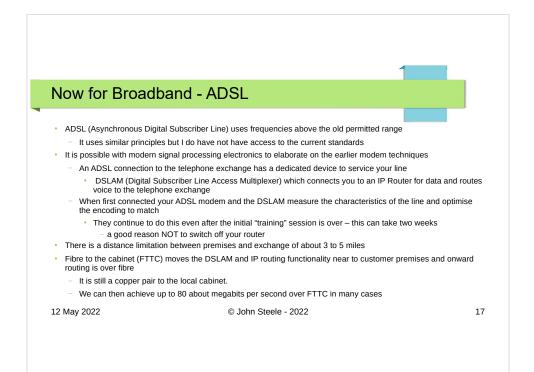

	1	
Copper Data C	Cables	
 early Eth still used Most compucable in mor What hat 	ling used to be used for data networks hernet (not quite the same cable as TV Coax!) d for Television uter cables are now Twisted pair and we will look at this t	ype of
12 May 2022	© John Steele - 2022	7

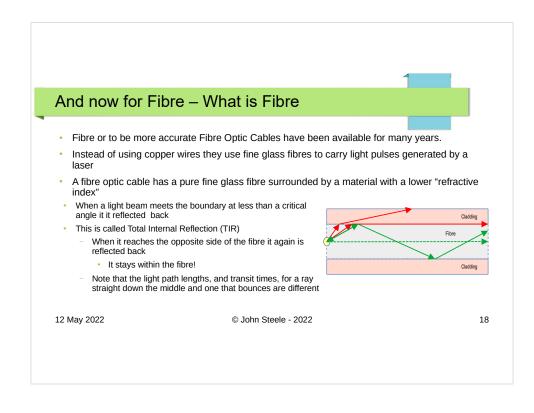


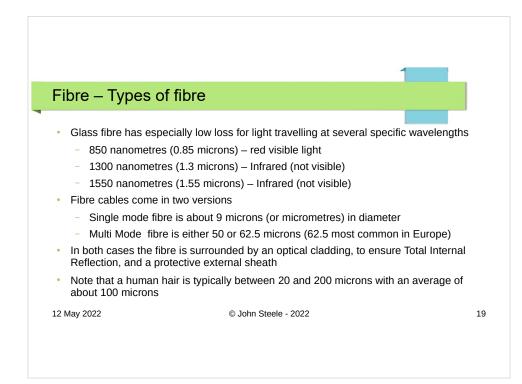

The drawings were produced in Visio

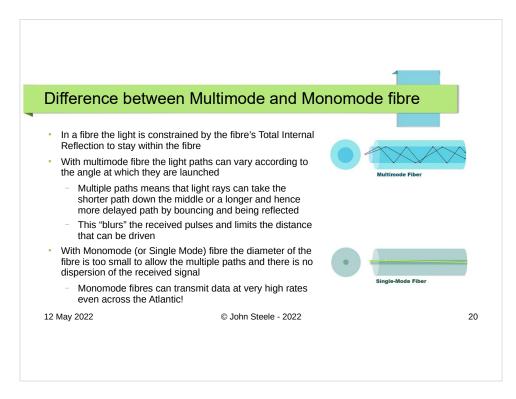


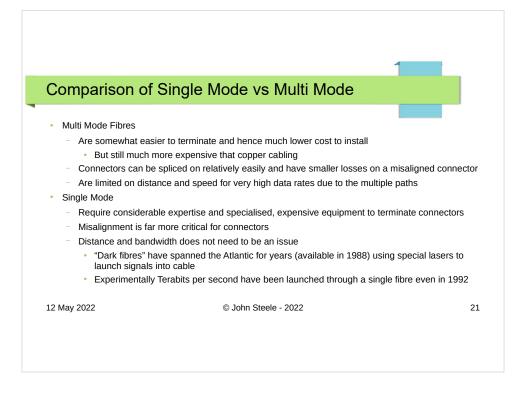


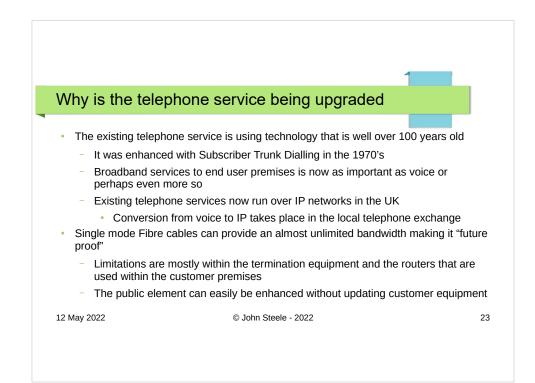

Example Data	1 1 packet - Ethernet	
 A self conta Preaml rece Body of Checks 	v sent in "packets" – Ethernet as an example lined set of bytes ble (7 bytes) + Start frame delimiter (1 byte) eiver clock synchronisation and start of message f message (60 to 1518 bytes) um (4 bytes) eck message is received correctly	
12 May 2022	© John Steele - 2022	12

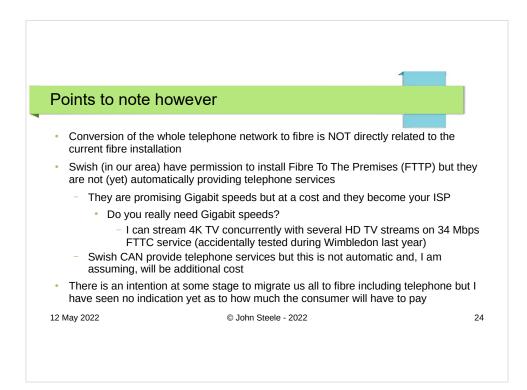






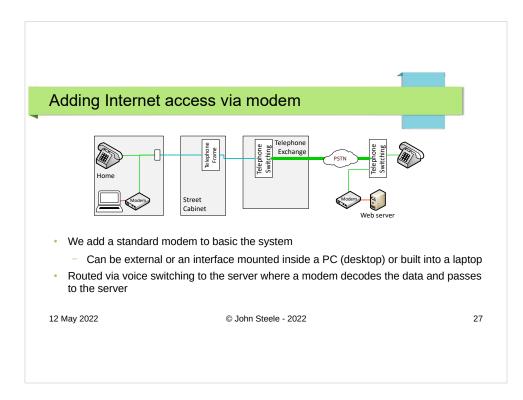


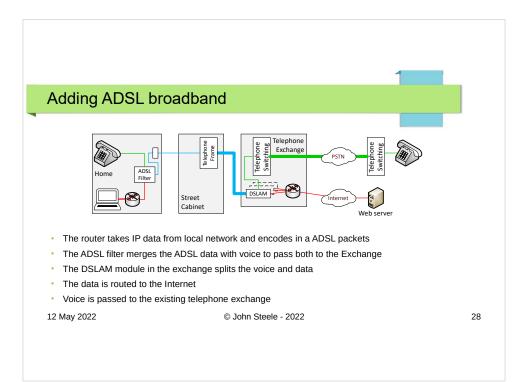

Comparison of copper cables to fibre

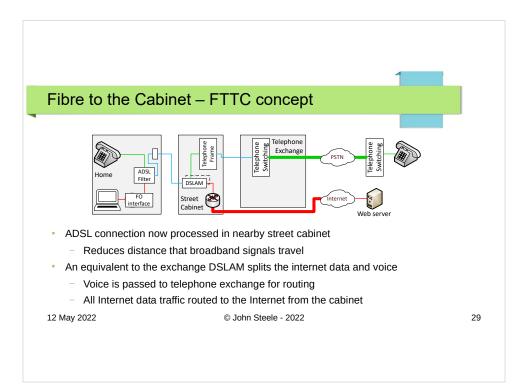

- Fibre can support higher data rates than copper
- · Fibre (particularly single mode) can pass data over much longer distances than copper
- Copper is much easier to install than fibre
 - Can be bent without damage
 - Connectors are very low cost
 - RJ45 tools for Ethernet RJ45 connectors about £15, Krone tools to terminate fixed cables cost about the same
 - Training for both types of connection takes about 5 minutes
 - Once trained connections can take less than 1 minute
- Fibre (especially single mode) is much more difficult to work with
 - Does not tolerate sharp bends maximum 50 cm bend radius during installation
 - Connectors are expensive and need expensive precision equipment and specialised training to add a connector to a cable the fibres are much thinner than a human hair!
 - Connections take much longer to terminate even for an expert
 - Equipment using fibre connectors is much more expensive that copper but does operate at higher speeds

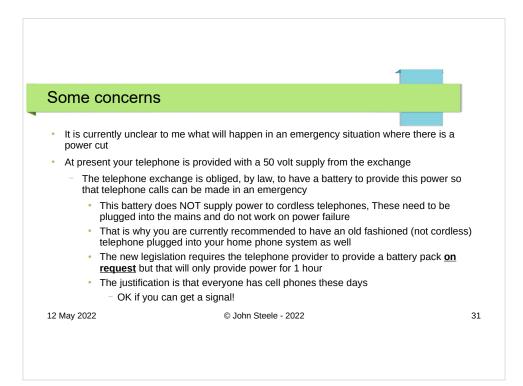
12 May 2022

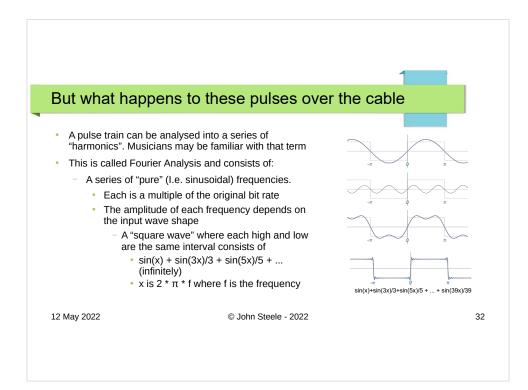
© John Steele - 2022


22






Basic Telephone	1	
Home • A basic telephone sv	Street Cabinet	
A basic telephone sy	stem before any data services are added	
12 May 2022	© John Steele - 2022	26



Full Fibre to Premises -	- eventually? - FTTP	
Home FO interface Cabinet	P Interface Web server	
 Phone is now converted to I 	P in the home	
All Internet and voice traffic	is voluted via the laternat	
All Internet and voice traffic		
12 May 2022	© John Steele - 2022	30

	1	
Copyright		
 John Steele retai 	ns the copyright to this document.	
	ial for non commercial purposes is freely permiti blicly accessible at all times and this copyright r	
	ial for any commercial gain requires explicit perr ler who may be contacted via jcs.copyright@so	
12 May 2022	© John Steele - 2022	